Can B(lp) ever be amenable?

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

) Ever Be Amenable?

It is known that B(l) is not amenable for p = 1, 2,∞, but whether or not B(l) is amenable for p ∈ (1,∞) \ {2} is an open problem. We show that, if B(l) is amenable for p ∈ (1,∞), then so are l(B(l)) and l(K(l)). Moreover, if l(K(l)) is amenable so is l(I,K(E)) for any index set I and for any infinite-dimensional Lspace E; in particular, if l(K(l)) is amenable for p ∈ (1,∞), then so is l(K(l ⊕ l...

متن کامل

ever be amenable ? Matthew Daws Volker

It is known that B(l) is not amenable for p = 1, 2,∞, but whether or not B(l) is amenable for p ∈ (1,∞) \ {2} is an open problem. We show that, if B(l) is amenable for p ∈ (1,∞), then so are l(B(l)) and l(K(l)). Moreover, if l(K(l)) is amenable so is l(I,K(E)) for any index set I and for any infinite-dimensional Lspace E; in particular, if l(K(l)) is amenable for p ∈ (1,∞), then so is l(K(l ⊕ l...

متن کامل

N ov 2 00 7 Can B ( l p ) ever be amenable ? Matthew Daws

It is known that B(l) is not amenable for p = 1, 2,∞, but whether or not B(l) is amenable for p ∈ (1,∞) \ {2} is an open problem. We show that, if B(l) is amenable for p ∈ (1,∞), then so are l(B(l)) and l(K(l)). Moreover, if l(K(l)) is amenable so is l(I,K(E)) for any index set I and for any infinite-dimensional Lspace E; in particular, if l(K(l)) is amenable for p ∈ (1,∞), then so is l(K(l ⊕ l...

متن کامل

Can viruses ever be useful?

M ost of the terms used for computer viruses arc metaphors: they have a largely medical origin, and are seductive if not literally sexy. The very real worries WC have about AIDS, for example, no doubt colour the way we talk about computer viruses. At the extreme, abstractly viruses arc clearly just algorithms, and like any other algorithm they arc good for some things and not good for others. T...

متن کامل

B(ℓ p ) can never be amenable

We show that, if E is a Banach space with a basis satisfying a certain condition, then the Banach algebra l∞(K(l2 ⊕ E)) is not amenable; in particular, this is true for E = l with p ∈ (1,∞). As a consequence, l∞(K(E)) is not amenable for any infinite-dimensional Lp-space. This, in turn, entails the non-amenability of B(lp(E)) for any Lp-space E, so that, in particular, B(lp) and B(Lp[0, 1]) are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2008

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm188-2-4